Optimal diagonal-norm SBP operators
نویسندگان
چکیده
Optimal boundary closures are derived for first derivative, finite difference operators of order 2, 4, 6 and 8. The closures are based on a diagonal-norm summation-by-parts (SBP) framework, thereby guaranteeing linear stability on piecewise curvilinear multi-block grids and entropy stability for nonlinear equations that support a convex extension. The new closures are developed by enriching conventional approaches with additional boundary closure stencils and non-equidistant grid distributions at the domain boundaries. Greatly improved accuracy is achieved near the boundaries, as compared with traditional diagonal norm operators of the same order. The superior accuracy of the new optimal diagonal-norm SBP operators is demonstrated for linear hyperbolic systems in one dimension and for the nonlinear compressible Euler equations in two dimensions.
منابع مشابه
New Diagonal-Norm Summation-by-Parts Operators for the First Derivative with Increased Order of Accuracy
In combination with simultaneous approximation terms, summation-by-parts (SBP) operators provide a flexible and efficient methodology that leads to consistent, conservative, and provably stable high-order discretizations. Traditional diagonal-norm SBP operators with a repeating interior point operator lead to solutions that have a global order of accuracy lower than the order of the interior po...
متن کاملOn the Order of Accuracy of Finite Difference Operators on Diagonal Norm Based Summation-by-parts Form
In this paper we generalise results regarding the order of accuracy of finite difference operators on Summation-By-Parts (SBP) form, previously known to hold on uniform grids, to grids with arbitrary point distributions near domain boundaries. We give a definite proof that the order of accuracy in the interior of a diagonal norm based SBP operator must be at least twice that of the boundary ste...
متن کاملMultidimensional Summation-by-Parts Operators: General Theory and Application to Simplex Elements
Summation-by-parts (SBP) finite-difference discretizations share many attractive properties with Galerkin finite-element methods (FEMs), including time stability and superconvergent functionals; however, unlike FEMs, SBP operators are not completely determined by a basis, so the potential exists to tailor SBP operators to meet different objectives. To date, application of highorder SBP discreti...
متن کاملDiagonal-norm upwind SBP operators
I will present some new results concerning explicit high-order finite difference methods applied to hyperbolic systems. In particular I will present some new results that support the addition of appropriate artificial dissipation, even for linear problems. Recently, high-order accurate first derivative finite difference operators are were derived that naturally introduce artificial dissipation....
متن کاملSummation-by-parts operators and high-order quadrature
Summation-by-parts (SBP) operators are finite-difference operators that mimic integration by parts. The SBP operator definition includes a weight matrix that is used formally for discrete integration; however, the accuracy of the weight matrix as a quadrature rule is not explicitly part of the SBP definition. We show that SBP weight matrices are related to trapezoid rules with end corrections w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 264 شماره
صفحات -
تاریخ انتشار 2014